九州官方网站 版权所有 2003-2023
-
您的位置:
- 网站首页
- > 九州(中国)科技有限公司官网
- > 鲸品堂
您的位置:
根据该企业的灾复数据稽核要求,算网大脑利用其多量纲编排能力,基于距离、时效等原则,在灾复数据产生地的周边算力池分配算力资源; 根据视觉检测的要求,快速在已分配的算力资源上,通过云原生的编排能力,自动化部署AI检测应用; 接收灾复数据,通过相对应的AI检测应用进行风险检测并输出结果,用于指导灾复工作开展;同时,在根据运行过程的状态,实施进行动态算力调整; 最后,在检测工作完成后,根据预定策略快速地释放算力资源。 首先,预设编排模型,按照性能、成本、能耗、安全4个纬度的不同占比,预设5个的编排模型,分别为综合模型、性能模型、安全模型、能耗模型、成本模型。例如:性能模型(性能权重最大,安全其次,能耗及成本最低)等; 其次,按照预设模型,按照相应的决策环境要求(业务诉求,性能诉求、价格要求等)及运行参数(算网运行感知参数)进行运算,计算出不同模型的得分; 最后,利用投票决策算法,针对备选方案进行二次计算打分,最终确定最优的编排方案。 扩容场景:例如,某应用使用的算力资源为位于A市的A算力池的4台服务器。当访问该应用的请求增多时,可以动态在A算力池追加服务器,对应用进行动态的扩容,以满足高并发的要求。此为,简单的扩容场景。更复杂的情况,当需求来之B市,A市与B市之间的网络质量要求无法满足该应用的要求时。可以在B市邻近的资源池C算力池调拨出部分资源,动态部署该应用的新节点,以方便来之B市的访问请求可以得到满足。 缩容场景的情况与扩容完全相反,不再赘述。 切换场景:以上述例子来描述。此部署在A市A算力池的某应用,但因算力池的故障或者网络等故障导致应用无法正常访问时。可以快速定位算力及网络环境达标的算力池,从中调配出算力资源,进行应用的应急部署,以进行快速的异常恢复。当然对于无状态的应用,可以快速地进行异地应急部署。但对于有状态数据的应用,需要有配套的数据备份机制,能够利用备份数据进行移动数据恢复,才能实现应用的跨算力池异地切换。 优化场景:指在运行中的某个应用,假设其应用部署在多个算力池中,从部署拓扑来看,呈现出网状的部署结构。可以根据感知的应用访问的响应情况、网络及算力池运行的性能数据,综合运算出其部署拓扑的调整建议,优化调整的范围包括同一算力池内的机器数量及配置等的调整,也可以包括跨算力池的部署结构调整。